18,814 research outputs found

    Heterogeneity in evolutionary games: an analysis of the risk perception

    Get PDF
    In this work, we analyse the relationship between heterogeneity and cooperation. Previous investigations suggest that this relation is nontrivial, as some authors found that heterogeneity sustains cooperation, while others obtained different results. Among the possible forms of heterogeneity, we focus on the individual perception of risks and rewards related to a generic event, that can show up in a number of social and biological systems. The modelling approach is based on the framework of Evolutionary Game Theory. To represent this kind of heterogeneity, we implement small and local perturbations on the payoff matrix of simple 2-strategy games, as the Prisoner's Dilemma. So, while usually the payoff is considered as a global and time-invariant structure, i.e. it is the same for all individuals of a population at any time, in our model its value is continuously affected by small variations, both in time and space (i.e. position on a lattice). We found that such perturbations can be beneficial or detrimental to cooperation, depending on their setting. Notably, cooperation is strongly supported when perturbations act on the main diagonal of the payoff matrix, whereas when they act on the off-diagonal the resulting effect is more difficult to quantify. To conclude, the proposed model shows a rich spectrum of possible equilibria, whose interpretation might offer insights and enrich the description of several systems.Comment: 7 pages, 5 figure

    Cooperation in public goods games: stay, but not for too long

    Get PDF
    Cooperation in repeated public goods game is hardly achieved, unless contingent behavior is present. Surely, if mechanisms promoting positive assortment between cooperators are present, then cooperators may beat defectors, because cooperators would collect greater payoffs. In the context of evolutionary game theory, individuals that always cooperate cannot win the competition against defectors in well-mixed populations. Here, we study the evolution of a population where fitness is obtained in repeated public goods games and players have a fixed probability of playing the next round. As a result, the group size decreases during the game. The population is well-mixed and there are only two available strategies: always cooperate (ALLC) or always defect (ALLD). Through numerical calculation and analytical approximations we show that cooperation can emerge if the players stay playing the game, but not for too long. The essential mechanism is the interaction between the transition from strong to weak altruism, as the group size decreases, and the existence of an upper limit to the number of rounds representing limited time availability

    Comment on: Kinetic Roughening in Slow Combustion of Paper

    Full text link
    We comment on a recent Letter by Maunuksela et al. [Phys. Rev. Lett. 79, 1515 (1997)].Comment: 1 page, 1 figure, http://polymer.bu.edu/~hmakse/Home.htm

    The Distribution of the Asymptotic Number of Citations to Sets of Publications by a Researcher or From an Academic Department Are Consistent With a Discrete Lognormal Model

    Full text link
    How to quantify the impact of a researcher's or an institution's body of work is a matter of increasing importance to scientists, funding agencies, and hiring committees. The use of bibliometric indicators, such as the h-index or the Journal Impact Factor, have become widespread despite their known limitations. We argue that most existing bibliometric indicators are inconsistent, biased, and, worst of all, susceptible to manipulation. Here, we pursue a principled approach to the development of an indicator to quantify the scientific impact of both individual researchers and research institutions grounded on the functional form of the distribution of the asymptotic number of citations. We validate our approach using the publication records of 1,283 researchers from seven scientific and engineering disciplines and the chemistry departments at the 106 U.S. research institutions classified as "very high research activity". Our approach has three distinct advantages. First, it accurately captures the overall scientific impact of researchers at all career stages, as measured by asymptotic citation counts. Second, unlike other measures, our indicator is resistant to manipulation and rewards publication quality over quantity. Third, our approach captures the time-evolution of the scientific impact of research institutions.Comment: 20 pages, 11 figures, 3 table
    • …
    corecore